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Abstract-A constraint on the maximum absolute value of the slope of the thickness function is found to
have a profound influence on the problem of optimal design of axisymmetric elastic plates by securing a
unique, regular solution. It is also shown, that except for the case of axisymmetric deformation, the
constraint is active everywhere and the optimal design is a plate, subdivided into annular regions of
constant slope equal to the maximum value permitted.

I. INTRODUCTION
A notorious difficulty connected with the problem of optimal design of thin elastic plates is that
unless specific precautions are taken, the set of admissible designs is open and does not contain
the limiting case of maximum stiffness (minimum compliance) or maximum natural frequency.

There are two different ways of resolving this difficulty. One is to extend the design space to
include some "generalized" structures, representing the limiting cases; the other is to restrict
the design space to some closed subspace of the given space by introducing geometrical
constraints.

In previous work on the optimization of thin elastic plates by the variational approach, both
methods have been employed with the purpose of obtaining a well-posed problem.

Immediately, it seems to be more attractive to employ the first method, i.e. to close the
design space by including the limiting designs.

In analogy with earlier work on columns and beams (see [1,2]) this was done for the
vibrating plate [3, 4], where a vanishing thickness at the simply supported boundary was allowed
for. However, it was recognized that for the plate the solution was only a local optimum [4] and
that there was no upper bound for the design variable (lowest frequency). This showed clearly
that no well-posed problem could be obtained in the case of plates solely by extending the
design space.

Consequently, in the next step geometrical constraints on the thickness (maximum and
minimum thickness) of the plate were introduced[5], thereby restricting the design space. But
as it appeared this did by no means close the design space and again the result proved that the
limiting design did not belong to the design space. Therefore a "generalized" plate model was
introduced[6] keeping the geometrical constraints on maximum and minimum thickness but
allowing for an infinite number of infinitely thin "stiffeners", defined by a stiffener density. Thus
the design space was restricted in one direction and extended in another. Now the problem
appeared to become well-posed but the price was of course a rather exotic plate model.

From a practical point of view, the "stiffeners" cannot be made arbitrarily thin, and
therefore it seems reasonable to introduce a constraint on the minimum width of a "stiffener".
Even if it were possible to formulate and solve this as a pure plate problem (i.e. a problem in
which a "stiffener" is merely treated as a-possibly discontinuous-variation of the thickness
of a Kirchhoff plate) it could hardly be justified. Rather, one should then reformulate the
problem as that of optimizing a stiffened plate of given total volume with uniform plate
thickness and given characteristics of permissible stiffeners.

In the light of previous work it might be claimed that optimization of Kirchhoff plates leads to
designs, for which the theory is not applicable. But that is not necessarily so, and in this paper
we propose a formulation of the problem that will resolve this dilemma, namely by restricting
the design space to plates of "slowly" varying thickness. In order to leave non-essentials out we
shall limit our discussion to the optimal design for minimum compliance of axisymmetric plates
of given volume. The thickness h is thus a function of the radius r only and we shall restrict
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ourselves to functions that are continuous, and satisfy the condition

Ih'(r)1 :5 Smax (1.1 )

where prime denotes the derivative with respect to r and where Smax is a given non-negative
number. It is remarkable that this constraint alone seems to be sufficient to ensure a well-posed
problem. Furthermore, it has the attraction that the design may now be limited to such cases for
which the Kirchhoff theory of thin plates is applicable.

As it turns out this constraint will prove to have a profound influence on the optimal design.
In fact, we shall see that with the exception of the case of symmetrical loading, the condition
(1.1) is active everywhere (implying a solution of the "bang-bang" type).

2. BASIC EQUATIONS

Let us consider a thin elastic homogeneous axisymmetric plate, bounded by the inner radius
R} and the outer radius R2, and let (r, 4» be polar coordinates on the middle-surface of the
undeformed plate, concentric with the plate.

We shall assume that the plate is loaded by an external load

P(r, 4» == p(r) cos mlj) (2.1)

where m is a non-negative integer. At the boundaries the plate is assumed to be free, simply
supported, or clamped. Under these assumptions the deflection of the middle-surface is

W(r, Ij)) == w(r) cos mlj)

and the components of the bending tensor of the middle-surface are given by

K rr == Krr(r) cos mlj); Kr,p == Kr,p(r) sin mlj); K,p,p == K,p,p(r) cos mlj)

where

K rr == w"

Kr,p == mew' - wlr)/r

K,p,p == (w' - m2wlr)lr.

(2.2)

(2.3)

Following the assumptions of the Kirchhoff plate theory this leads to the differential
equation

where

d{d (d2W (dW ,W)]- -D r-:J:T+v --m'-
dr dr dr dr r

[
d2w 2 Idw ) 2 W ]}-D v-:J:T+[2(l-v)m +l]---(3-2v m -
dr r dr r

m
2{ d

2
w 1dw W}-D- v"7:!+(3-2v)---[2(l-v)+m2]~==rp(r)

r dr· r dr r
(2.4)

(2.5)

and where E is Young's modulus, v Poisson's ration and h the thickness of the plate. Equation
(2.4) together with the appropriate boundary conditions determines the function w(r).
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The compliance <I> of the plate (for the load P) equals the work done by the external forces

f
R2

<I> = C p(r)w(r)r dr
R1

(2.6)

where C = 'Ir for m = 0 and C = 'Ir/2 for m > O.
The problem can now be stated as to find a thickness function h(r) from a given set of

admissible functions that minimizes the compliance <1>. The load p(r) and the number m is
given.

Let us define the set of admissible functions. First, we restrict the set to continuous
functions for which the first derivative is at least piecewise continuous in the interval
R1:s r:S R2• Secondly, we consider only plates of a given volume, so that h is subject to the
volume restriction

f
R 2

h(r)r dr = 1.
R1

(2.7)

Finally, we restrict the set to those functions h for which the slope is bounded by a given
non-negative number Smax'

(2.8)

These are the only constraints imposed on the design variable.
Since in our case of an elastic material, the work done by the external forces equals the

strain energy, we have

where Q is the following quadratic function of the components /(m /(~' and /(T~

(2.9)

Consequently, we can write

(2.10)

Let us assume that, for the optimal plate, the constraint (2.8) is active in a certain subdomain
U. of the total domain U (R1:s r:S Rz). Let l)h be a small variation of the thickness function,
such that 8h(r) == 0 whenever rEUs and fulfilling the condition of no volume change,

(2.11)

but otherwise arbitrary.
When the thickness h is changed to h + l)h, the deflection w changes to w + 8w and the total

compliance <I> to <I> + 8<1>. But the contribution to 8<1> from 8w according to (2.10) must be zero
since w is the deftection in a state of equilibrium (principle of virtual work). Therefore, we
have, also from (2.10)

(2.12)
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For the optimal plate 8<1> = 0 and a comparison between (2.11) and (2.12) shows that

(2.13)

where A is a constant.
To determine the shape of the optimal plate we have to find the domain Us in which the slope

constraint is active and a thickness function which satisfies (2.13) in the remaining part U0 of the
total domain U.

3. THE CASE OF AXISYMMETRIC LOAD

In the axisymmetric case (m = 0) a considerable simpillication is obtained when the annular
region of the plate is assumed to be narrow. Let R2 - RI be kept equal to I and let R1 grow
without limit. The differential equation (2.4) will then reduce to

(3.1)

where x = r - R I • This is in fact the differential equation of an Euler-Bernoulli beam with
bending stiffness D. Let us study the case of a simply supported plate (beam) with constant load
p(x) = q.

The boundary conditions can be written as

and
dw d3w 1
- = ":i::J" = 0 for x = ­
dx dx 2

(3.2)

due to the symmetry of the solution. We shall confine the analysis to the region 0~ x ~~.

In this case, the constraint (2.8) is active in two regions close to the supports x = 0 and
x = 1. We may therefore write

h(x) = {a + sx 0~ x ~ \0
K(X) XO~X~2

(3.3)

where Xo is unknown, but which shall be assumed fixed in the first step of the analysis. The
function K(X) is determined from the condition of optimality (2.13), which in this case reduces
to

(3.4)

From (3.1), (3.2) and (3.4) we find

K(X) = AYx(l-X) Xo~X ~~

where Ais undetermined as yet.
The thickness function must be continuous at x = xo, i.e.

a + sXo = AY[xo(l- xo)]

(3.5)

which determines A. The constant a is then determined from the condition on the total volume,

I
XO JI12 1

(a+sx)dx+ K(x)dx=2
o Xo

(3.6)
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which yields the expression

a(xo+ J) = 1- sxol

with

I 1 (7T 1 .•1-)
J = 2+V[xO<x _ xo» i - 2arCSlD v Xo .

The compliance is determined from (2.9) and has the following form

$ =(!l) 2{X04 - 3xo2 - 2axo - (l + a)(4xo3 + 18xo2 + 12a2xo)
2 2s(a +sxi

+ xo
2
(l-Xo>2(l- 2axO- sXoi + 1+6a(l +a)lo (1 + xo)}

2(a + sXot S3 g a
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(3.7)

(3.8)

(3.9)

where a =a/s.
The problem is now solved for a given value of s = Smax by taking a starting value of Xo and

solving first a from (3.7), (3.8) and then $(xo) from (3.9). The optimal value of Xo is then
determined by a bisectional procedure. Table 1 shows some results.

For large valuest of Smax the domain of active constraint Uo, determined by Xo, consists of
two narrow annular regions close to the boundaries. These regions widen when Smax decreases
and meet each other at the center for Smax = 1. For this value and smaller values of Smax the
constraint is active everywhere and the design of the optimal plate becomes trivial. The slope
h'(x) of the optimal plate is discontinuous at X(h which is seen from the last column in table 1.
Of course, any assumption to the contrary would lead to a sub-optimal solution.

For values of RIIR2 < 1 the problem cannot be solved in closed form and we have to resort
to a solution by successive iterations that yield a sequence of functions hi.

With the simple case above in mind we assume that the constraint is active in two annular
regions reaching inwards from the boundaries of the simply supported plate and determined by
the inner radii PI and P2, such that RI< PI S P2 < R2.

For a given thickness Mr) the differential equation (2.4) is solved numerically by a
Runge-Kutta procedure. This leads to a deflection function Wi and a corresponding compliance
$j. If we determine the next iteration hj+1 from the condition (2.13) in the following form,

hf+IQi[K) = A

Table 1. The limiting case Rz/R1-+ 1.
The compliance is given as a fraction of
the compliance of a plate of uniform

thickness.

Smax Xo <1>/<1>" K'(XO)

0 ooסס.1

I 0.5000 0.8146
t.5 0.3970 0.7743 0.53
2 0.3157 0.7516 1.00
3 0.2022 0.7303 1.89
4 0.1352 0.7220 2.71
6 0.0697 0.7164 4.30
8 0.0415 0.7148 5.85
12 0.0193 0.7139 8.90
16 0.0110 0.7136 11.92
24 0.0050 0.7135 17.95
<Xl 0 0.7134

tIn order to give the results a more general shape it is convenient to define the "slope" as a dimensionless multiple of
h.J(R2 - R1), where h. is the thickness of a uniform plate of the given volume.
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the sequence hi will diverge. On the other hand, if we replace (2.13) by an equivalent expression
in terms of moments and define hi+1 by

where

M" = D(K rr + VK<t><t»

M~ = D(K# + VK rr )

M,<t> = D(l- V)K,<t>

(3.10)

(3. I l)

all computed for hi and the corresponding displacement Wi, we obtain a converging sequence hi. In
this procedure the constant A is determined from the conditions of continuity of h(r) at PI and pz
and the condition of given volume.

The result of this procedure yields the plate of minimum compliance <I>(Ph pz) for given
values of PI and Pz· The solution of the problem, the optimal plate, is the one that yields the
smallest value of <I>(Ph p2) for all PI and Pz. Thus

<l>oP! = Min <I>(Ph p2)
Pl'P2

and we find the minimizing values PI and P2 by a bisectional method.
The following results were obtained.
With R1 = 100, R2 = 101 and Smax = 6 we found the compliance of the optimal plate, loaded

by a uniformly distributed load, to be <I>/<I>u = 0.7166 for PI = 100.0675 and P2 = 100.9305. The
result is thus quite close to the limiting case for Smax = 6. The shape of the cross-section is
shown in Fig. I, where one can notice the discontinuities of h'(r) at PI and P2'

When the ratio R2/R 1 grows the solution becomes more asymmetrical and at some stage the
character of the solution changes radically. For R2/R I =5 and Smax =6 the cross-section of the
optimal plate is shown in Fig. 2. The slope has changed sign in the inner domain of active
constraint and has the same sign as in the outer domain. This can be ascribed to the beneficial
inftuence of the torsional stiffness and the result is a considerably improved value of the
compliance, <I>/<I>u = 0.5196.

The transition between positive and negative slope at the inner radius takes place for some
value of R2/R 1 close to 3.8, but this limit has not been accurately determined yet.

Decreasing values of Smax lead to a wider outer domain of active constraint and a narrower
inner domain. For increasing values of Smax the situation is reversed. For very high values of
Smax the situation gets more complicated. It seems that the inner domain subdivides into three or

I

1- -II--E-- -----0-
Fig. 1. Cross-section of optimal plate with m =0, R, = 100. R2 = 101. Sm.x =6. <1>/<1>. =0.7166.

I

t­
I

Fig. 2. Cross-section of optimal plate with m = O. R, = 0.25, R2 = 1.25, Sm" = 6. <1>/<1>" =0.51%.
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more subdomains with alternate negative and positive slope. However the solution has not been
pursued further in this direction.

4. DOMAIN OF ACTIVE CONSTRAINT FOR m>0

For the optimal plate the domain of active constraint (2.8) is U. and we recognize that if U.
was known and given beforehand, the problem could be formulated in the following manner:
Find a continuous function her) subject to the volume restriction (2.7) and the condition

Ih'(r)1 = Smax for r E U. (4.1)

which minimizes the compliance 4>. This implies that we may disregard the condition (2.8) in the
domain Uo. And this again implies that a thickness function which is subject to the conditions
mentioned above but violates the constraint condition (2.8) anywhere in Uo could not yield a
smaller compliance than the minimum value found above.

With this in mind we can demonstrate that for the case m> 1 the domain Uo is empty, i.e.
the constraint (2.8) is active everywhere.

To show this, let us assume to the contrary that Uo is not empty and that 4>min with the
corresponding thickness function hoCr) is the solution to the problem as formulated above and
let wo(r) be the displacement function corresponding to hoCr).

Suppose Wo = 0 everywhere in Uo.t Then Q[K] l!I! 0 in this domain and therefore the constant
A in (2.13) must vanish. Hence, the condition of optimality (2.13) is fulfilled for any her) in Uo•
However, since the total volume is given the optimal plate must have h == 0 in Uo. Everywhere
else, of course, Ih'(r)1 = Smax'

Having examined this rather pathological instance, we return to the general case, in which
Wo does not vanish everywhere in Uo. Under these circumstances, we may always find an
interior point ro in Uoand a small positive number E, such that woCr) ~ 0 for all r satisfying the
relation (1- E2)ro:5 r :5 (1 +E~ro.

Let furthermore her) be a continuous thickness function defined by

(

(1- E)ho(r)
her) = (1- E)ho(r) +H[r - ro(1- E~]

(1- E)ho(r) +H[roCl +E~ - r]
(1- E)ho(r)

By a proper choice of H,

for R):5 r:5 ro(1- E~
for roCI- E~:5 r:5 ro

for ro:5 r :5 ro(1 +E~

for roC1+ E~ :5 r :5 R2•

(4.2)

(4.3)

we ensure that her) satisfies the volume restriction (2.7). Thus her) corresponds to a plate of
thickness (1- E)ho(r) with a narrow wedge-shaped region at roo

The strain energy in the wedge-shaped region roO - E~ :5 r :5 !oO +E~ is given by the
integral

for which we make the following estimate,

(4.4)

where A is a number independent of E. But the total strain energy (which is greater than W.)

tThis could happen under very special load conditions. A necessary condition is p(r) IE 0 in Uo, but this is by no means
sufficient.
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equals the work done by external forces and is therefore bounded above. Hence, as E-+ 0 we
must have Qmin[K]-+ 0 and this can only happen if all three curvatures K"., K<b<l" and Kr<b tend to
zero as E -+ O. Solving (2.3) for K rr = K<b<l> = Kr<b =0 we see that w"(ro), w'(ro) and w(ro) all must
vanish when E -+ O.

From the expressions (4.2) it follows that h -+ ho everywhere, except in the neighbourhood
of ro where the plate acts as if it were clamped.

Since clamping at an interior circle ro must increase the stiffness of the plate, there are
positive values of E for which the compliance of the plate with thickness h(r) according to (4.2)
is smaller than the optimal value $min'

Thus, the assumption that the domain Uo is not empty leads to a contradiction and we must
therefore conclude that the geometrical constraint (2.8) is active everywhere, i.e.

(4.5)

In the case m = I the solution of (2.3) with Krr = Kr<b = K# =0 will yield w"(ro) =0 and
w(ro) = row'(ro). This does not correspond to a clamping of the plate. However, it can be shown
that by defining a thickness function h(r) properly, w" may be made to vanish at any finite
number of equally spaced interior points of the domain Uo.

Thus in the limit the plate with thickness function h(r) will behave like a rigid plate in Uo
and again that plate must be stiffer than the optimal plate ho(r). Therefore, the condition (4.5)
holds for all m > O.

5. THE CASE m >0

We have found that in the case m > 0 the thickness h(r) of the optimal plate is a piecewise
linear function, which due to the requirement of continuity must have an alternating positive
and negative slope ±smax in successive intervals.

Let us assume that the intervals are separated by n radii rt. r2, ... , r" given in increasing
order,

(5.1)

With given values of rt. ... , r" and a given sign of h'(r) in-say-the first interval, the
thickness h(r) is uniquely determined by the volume restriction (2.7). The problem is therefore
reduced to determining a finite set of numbers rb ... , r" and the sign of the slope in the first
interval.

To solve this problem, assume that n is known and consider the compliance function
$(rt. ... , r") when h'(r) is positive in the first interval, and

(5.2)

To minimize $ we shall employ a method of steepest decent using steps of equal!<mgth as long
as the compliance is decreasing. Whenever a step has the effect of increasing the compliance
the procedure is continued with a step length half the previous one. This method works well
and the convergence is fast for small n, but slows down for larger numbers n.

Since the number of switching points n of the optimal plate is not known a priori we have to
find this number by trial. If we try too small a value for n, say p < n the value of $ will improve
(decrease) when p is increased. Too large a value of p will do no harm, since any two
neighbouring switching points may coalesce. Also, if the slope h'(r) of the optimal plate is
negative in the first interval, contrary to our assumption, the procedure selected will make
rl-+ R( and with rl = R1 the optimal solution will be obtained provided that p is large enough
(p ~ n + 1).

Thus we have

(5.3)
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To apply the method of steepest decent, we must first determine the gradient of 4>.
Assuming (5.1) to hold, let rj be incremented by 8r; while all the remaining variables rj (j'" i)

are kept fixed.
From the geometry of the problem, and the condition that the total volume of the plate does

not change, the increment 8h due to 8r; is uniquely determined by

8h =

1 Rl-r/
(2-1) Smax R 2 R 2 8r; for R1:5 r < r;

2 - 1

(5.4)

The increment 84> due to 8h and therefore due to 8r; is found when 8h according to (5.4) is
substituted into (2.12). In the limit we have

(5.5)

The gradient (34)13r;) is used to determine the direction of the steps in the numerical
procedure. Thus

(5.6)

where 8r is the step length and 18<1>I8rll the norm of the gradient. After each step the current
value of 4> is determined. If <I> has increased, 8r is replaced by 8r/2.

For the optimal plate (84)13rl) =0 and we find the following necessary conditions of
optimality

(5.7)

where ro =R1 and rn+l =R2•

The quantity h2Q is proportional to the mean strain energy density per unit thickness of the
plate. Equation (5.7) states that this mean strain energy density averaged over any fuU interval
of constant slope equals the average taken over the whole plate. The conditions are nothing but
a discretized version of the optimality condition (2.13), which states that this mean energy
density is uniformly distributed in any domain in which the constraint (2.7) is not active.

From the results obtained, three examples are given below. A simply supported plate with
R21R1=5 was optimized for the case m =4 with three different constraints on the maximum
slope, Smax =2 (Fig. 3), Smax =4 (Fig. 4), and Smax =8 (Fig. 5). The number of intervals of
constant slope was found to be 3, 5, and 9 respectively. In all three cases the optimality
conditions (5.7) were satisfied to a high degree of accuracy. The required accuracy was obtained
after 110 iterations in the first case (smax = 2), after 793 iterations in the second case (smax =4)
and after 7890 iterations in the last case (smax = 8). It was found that convergence was speeded
up when the step-length was increased by a factor 1.05 after each step that resulted in an
improved value of 4> and decreased to half the previous step whenever 4> increased.

I
t--­
I

Fig. 3. Cross-section of optimal plate with m=4, R1=0.25, R2 =1.25, Sma. "" 2,4>/4>. =0.8934.
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I
t-

Fig. 4. Cross-section of optimal plate with m =4, Rl =0.25, R1 1.25, Sma> =4. <I?/¢. =0.8502.
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Fig. 5. Exploded view of optimal plate with m =4, R l =0.25, R2"" 1.25, Smax "" 8. ¢/<I?u = 0.7768.

6. DISCUSSION

A constraint on the slope h'(r) has a profound effect on the problem of designing optimal
plates. Of prime importance is the fact that the problem becomes well-posed. In addition an
unexpected result is that except for a limited range of the parameters in the special case of
rotational symmetry, the constraint on the slope is active everywhere. The optimal plate
(assumed to be axisymmetric) will have a cross-section bounded by straight lines for all values
of m > 0 and all finite values of Smax'

From the requirement of given volume it follows that the number of wedges n must increase
with Smax so that n~ 00 as Smax~ 00. This explains why the problem becomes ill-posed when
there is no restriction on the slope h'(r).

The range of values for all parameters characterizing a problem is wide. Only a few cases,
believed to be typical, have been treated and certainly the problem could and should be pursued
in a number of different directions.

From a theoretical, although perhaps not from a practical point of view the behaviour of the
solution for m> 0 and large values of Smax would be interesting to follow. But there are
indications that this direction might lead to numerical difficulties.

Of considerable interest is certainly the problem of optimizing plates of more general
shapes, starting perhaps with rectangular plates. A reasonable conjecture is that a constraint on
the gradient of the thickness will result in well-posed problems with solutions characterized by
19rad hi =Smax'
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